Posets with Cover Graph of Pathwidth two have Bounded Dimension
نویسندگان
چکیده
Joret, Micek, Milans, Trotter, Walczak, and Wang recently asked if there exists a constant d such that if P is a poset with cover graph of P of pathwidth at most 2, then dim(P ) ≤ d. We answer this question in the affirmative. We also show that if P is a poset containing the standard example S5 as a subposet, then the cover graph of P has treewidth at least 3.
منابع مشابه
On the Dimension of Posets with Cover Graphs of Treewidth
In 1977, Trotter and Moore proved that a poset has dimension at most 3 whenever its cover graph is a forest, or equivalently, has treewidth at most 1. On the other hand, a well-known construction of Kelly shows that there are posets of arbitrarily large dimension whose cover graphs have treewidth 3. In this paper we focus on the boundary case of treewidth 2. It was recently shown that the dimen...
متن کاملMinors and Dimension
It has been known for 30 years that posets with bounded height and with cover graphs of bounded maximum degree have bounded dimension. Recently, Streib and Trotter proved that dimension is bounded for posets with bounded height and planar cover graphs, and Joret et al. proved that dimension is bounded for posets with bounded height and with cover graphs of bounded tree-width. In this paper, it ...
متن کاملLocal Dimension is Unbounded for Planar Posets
In 1981, Kelly showed that planar posets can have arbitrarily large dimension. However, the posets in Kelly’s example have bounded Boolean dimension and bounded local dimension, leading naturally to the questions as to whether either Boolean dimension or local dimension is bounded for the class of planar posets. The question for Boolean dimension was first posed by Nešetřil and Pudlák in 1989 a...
متن کاملSparsity and dimension
We prove that posets of bounded height whose cover graphs belong to a fixed class with bounded expansion have bounded dimension. Bounded expansion, introduced by Nešetřil and Ossona de Mendez as a model for sparsity in graphs, is a property that is naturally satisfied by a wide range of graph classes, from graph structure theory (graphs excluding a minor or a topological minor) to graph drawing...
متن کاملThe Dimension of Posets with Planar Cover Graphs
Kelly showed that there exist planar posets of arbitrarily large dimension, and Streib and Trotter showed that the dimension of a poset with a planar cover graph is bounded in terms of its height. Here we continue the study of conditions that bound the dimension of posets with planar cover graphs. We show that if P is a poset with a planar comparability graph, then the dimension of P is at most...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Order
دوره 33 شماره
صفحات -
تاریخ انتشار 2016